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ABSTRACT

The mechanism of the doublet at supersonic speeds is described using

"elementary physical reasoning insofar as is possible. The cause of the

infinities introduced into the equations by the differentiation process

across the Mach cone is discussed. In addition the physical process involved

in passing from the fixed to the moving doublet is explained. Finally some

applications of doublets to supersonic aerodynamic problems are included.
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TABLE OF SYMBOLS

x, y. z, t j- space and time coordinates (ft) (secs.)

p(x,y,z,t) - pressure at x, y, z, at time t lbs/sq ft

- source strength lbs/ft

= time of emission of source pulse striking the point
x, y, z, at time t

W = vertical velocity (ft/sec)

U = horizontal velocity (ft/sec)

Mach angle

= doublet strength lbs

Spotential (ft 2 /sec)

C velocity of sound (ft/sec)

•t -time of emission of fixed source pulse striking the
point x, y, z, at timet.

I -- Mach number

running x, y, coordinates (ft)

L lift per unit area (#/sq ft)

e _angle used as integration variable

=: y/x

Z polar angle of curve surrounding a singularity

Sradius of curve surrounding a singularity

= y/x value corresponding to edge of delta wing
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INTRODUCTION

The use of sources and doublets for the analysis of flow fields has

led to many useful results in aerodynamics. In the developments concerning

incompressible flow, the physical pictures of sources and doublets were

retained while for supersonic flow the approach has been more mathematical

in the sense that the source and doublet flows have been referred to as

particular solutions of the differential equation involved rather than

physical flows. This mathematical a;proach has the disadvantage that the

development of intui.tion by designers and engineers regarding supersonic

flows is impeded.

In reference 1, the development of supersonic theory utilizing the

source i.e., a point in the fluid at which fluid is added or withdrawn at

a given velocity. The effect of moving the source is then derived following

the superposition method of Prandtl given in reference 2. This process

enables one to follow the physical mechanism involved in the fluid motion

around bodies moving at speeds faster than sound. Another concept des-

cribed in reference I is the pressure source in which fluid is introduced

with a certain acceleration. For many problems, the pressure source seems

to give a simpler picture of the flow than the velocity source.

Some problems in fluid mechanics can be readily solved with the use of

the double source or doublet. In this case a source and sink are brought

close to each other but the s.rength times the distance is held constant.

Mathematically this situation can be represented as the derivative of the
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source along the line joining the source and sink. The pressure doublet then

corresponds to the derivative of the pressure source. The stream lines can

be readily visualized i. e: one half of the fluid goes directly from the source

to the sink and the remainder flows from the opposite side of the source to

the corresponding side of the sink.

It has been found in supersonic flows that the pressure of both the source

and doublet is infinite along the Mach cone. This situation causes little

trouble in the cave of the source but has required special mathematical tech-

nique in the case of the doublet. Another characteristic of the doublet is

the difficulty of passing from the fixed to the moving doublet.. It is shown

that Prandt11 s approach for the source as modified in reference 1 does not

seem to be applicable to the doublet. One of the purposes of this report is

to clarify the physics involved in the two difficulties listed above. Another

purpose is to present some of the known applications of the doublet without

the use of the special mathematical techniques normally applied.
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PART I

SINGULARITY AT THE MACH CONE:

The singularity at the Mach cone for the doublet is clearly tied up

with the fact that one takes derivative of the source pressure which jumps

from zero to infinity on the Mach cone. From reference 1, we have for the

pressure of the moving source the following expression:

-A , 2 , E ( C)9 1 7
where p = (pressure) lbs/sq.ft.

S= strength of source ( lbs./ft.)

x, y, z coordinates in the moving system (ft.)

M Mach number of source moving along thb x axis in the
negative direction

starting time of source sriking the point K, y. z, at
time t

C

For the case where the source strength is steady i.e., (() -. ,

there will be two waves striking the point x, y, z at each value of time

i.e., the backward moving part of one wave and the forward moving part of

another wave emitted at an earlier time. The steady state expression is

therefore:

1.2 W Tt-AC-290 =
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This wave will accelerate the air particles according to Newton's Law

i.e## proportional to the pressure griaieint. Application of this formula

demonstrates the cause of the mathematical difficulties in handling doublets

at supersonic speeds i.e.:

1.3 ý _.

Considering this expression, we sec. that always has the same sign

behind the Mach cone and all particles would be accelerated down. However

as the particle enters the Mach cone it 4ill be accelerated up since the

pressure jumps from zero to infinity. This upward acceleration which is

neglected in the usual computation cancels the infinite downward acceleration

which gives rise to the infinite velocity obtained in the mathematical pro-

cedure as follows:

where the * refe-s to the value of x which will cancel the denominator i.e.,

the point where the particle is at the Mach cone. The integral yields the

expression:

1.5 W _ _ _ _ _ _ _ _

so that substitution of the limit xr gives an infinite velocity everywhere.

WADC TR-52-290 2



From. simple acoustic theory, the velocity due to a plane wave is f/P.

Since the Mach cone appears plane to a particle very close, this formula

can be used to evaluate the axdally symmetric velocity caused by the positive

pressure jump just ahead of the Mach cone. The vertical velocity caused by

this jump is:

1.6 W 6 C ob 7_ C OS..... ..

where P is the Mach angle.

Now =/1-9 and so that the infinite

velocity due to the acceleration just behind the Mach cone is cancelled out

by the infinite velocity due to the pressure jump just in front.

The above derivation gives a physical explanation of the infinities

which arise in supersonic thieory and w;hich have recuire& various matLe:atical

schemes such as HaITamard's method.

The velocity caused by a pressure source at the origin is therefore

given by the expression:

1.7 WX a.TrPu (9+ a Y ,.j z,) (Mý XY 47"

The veoci••y caused by a doublet is obt.ined b- takinr, the derivative i.e.,

W 7 (M 2ý- z

1.8

-.AJ TR-52-290 3



We can obtrý n c rizion 1.3 i 'nD:tcj fo 3' ,

pressure doublet.

1.9 7 -3

The vertical :'ccclei'ation is:

1.10 .0' C'j ________ 31-5Z3
Z -• r " .

Integration viith res-rcct to x yicl.ds for the velocity:

If ye neglect the lo•,:er limit, the result is:

1.12
___z _ ______ x3 Z2"))

Comparison of 1.12 vuth 1.8 s.ows that the first teriu of 1.12 eouals the

second term of 1.8. Combining tle other terms of 1.8 yields:

.•( •)x z•( 'z)-Zx Z
1.13 (Z
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An identical result is obtained from 1.12 wr~ich shopxs the identity of

the two methods but does not justify omitting the term.s with X* as the lower

lip-it. This justification is obvious however from eouation 1.6, the deriv-

ative of which with respect to Z exactly cancelling out the infinite terms

caused by the lower limit in 1.11.

WADC M-52-290



PART II

THE MOVING DOUBLET

In reference 1. the effects of motion on the pressure or velocity source

is demonstrated in a very simple manner. A moving source is represented as a

series of fixed sources emitting fluid for short intervals of time in successive

positions corresponding to the location of the moving source. The pressure

change here is caused by overlapping of the waves at a given point in space.

This treatment essentially follows that of Prandtl given in reference 2.

The usual treatment which yields the moving uoublet is to take the de-

rivative of the moving source although it is possible that a clearer picture

could be obtained by directly passing from the fixed doublet to the moving

doublet. An attempt to use the Prandtl method for this purpose proved un-

successful as explained in the derivations of this part of the report.

We consider first the potential caused by a fixed source.

The fixed doublet then follows from the expression for the derivative

11.2 0 - %_ _-- )

This is the same ex-rression as the velocity of fluid from the source. The

first term represents the velocity one ',.ould obtain from ýn incompressible
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source. The second term represents the velocity due to the acoustic wave

which is emitted whenever the source changes its strength. For steady flow

behind the wave front, we can neglect the second term. It was noted in Part

I that the velocity Mesed by this second term cancels the infinity occuring

in the mathematics for velocity calculation.

If we calculate the potential of a moving source using Prandtl's method,

we obtain the following relation (see reference 1):

~~(1Z,~~ ~ Fr u Cr.uX- ut,)j c-l

Where the term on the right hand/side between the bars represents the contraction

of a wavelet due to its motion. In the fixed system the wave is contained

between two spheres having the same center while in the moving system the

center of the two spheres is different. The potential increases in proportion

to the contraction ratio. We can visualize this as follows: each wavelets is

made up of a number of elementary wavelets each of which represents a certain

value of the potential. When the wavelet is contracted as a result of motion,

the elementary wavelets overlap so the potentials add.

The value Ut, in 11.3 represents the position of the elementary wavelets

striking the point x, y, s, at time t. Now if we express ijin terms of x, y,
z, and t.J^., C- 9-G j the

expression for the potential in the moving system is:

11W4 4E



which is the well known result.

When we take the derivative of with*t respect to Z , the term outside

the brackets in 11.3 turns out to be the velocity of the fixed source however

inside the brackets both f and ti are functions of 4 so that these terms

must be included in the derivative e- pression. This means thpt the velocities

add because of the overlap as is the case for the potential but additional

gradients in the potential exists bec: use of the contraction and because of

the change in ti,.ith 7 which result in additional velocities. This me;,ns

that we c-:nnot add the velocities at a point caused b- , succession of fixed

sources and obtain the velocity of the :..ovinu source but we must also add the

incremental velocities caused by the motion. A si:.nilar condition e:ai.ts in

the case of the pressures due to a moving doublet.

If we su' stitute C(t-t,)or r which is its cr- ivalent we obtain for

from 11.3:

The derivative then yields:

11.6 C E U - J Y',).%

Using the relation mentioned above i.e.:

11.7 Q× At)+ '"z 'tt)

which gives after differentiation:

..r Ti_52_290



so that:

11.9

whert %K'utwK in the moving system of coordinates.

This part of the report indicates that the superposition method of

Prandtl's does not seem to be applicable for the velocity due to a source or

the pressure due to a doublet. However there is no ouestion that a moving

doublet is the equivalent of a series of fixed doublets each emitting suc-

cessive pulses from the position of the moving doublet. The problem here

seems to obtain the correct value for the summation of .the velocities and

pressure pulses. For a more detailed understanding of the details of such

a summation, it appears that more research is needed.

WAXC TR-52-290 9



PART III

APPLICATIONS OF DOUBLETS TO SUFLILSO.4IC PhOBLEMS

The first step in the application of the doublet to the solution of

aerodynamic problems at supersonic speeds is to relate the doublet strength

to a quantity at the surface of the airfoil. It will be shown by analogy

with the velocity source that the strength of a pressure doublet is ecual to

the lift on an element 4 of the wing surface. The pressure of a doublet

corresponds to the velocity of source since the first is obtained by the

partial derivative of the pressure source and the second by the partial

derivative of an ordinary fluid source. In a fluid source the potential and

velocity are -iven respectively by:

III.1 E.

4Wr

111.2 4_ t
21 _ 4 TT X- r

Equation III.1 and 111.2 correspond: to a sink since the vertical

velocity is negative for positive 7_ and positive for negative Z . In order

to evaluate w ,e assume a small area a is represented by a distribut-

ion of sinks of uniform strenmth per unit area i.e., f is replaced by

Very close to the surface the flow urill be plane so that the velocity is given

by the volume flow per second divided b, the area i.e.

1113-3W TR52-290 I
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Since W corresponds to the pressure E is the twice the pressure on

the upper surface and e is the lift acting on the element 144. In

corresponding fashion E for a velocity doublet can be shown to be ecual

to the difference in potential times the area.

From the above, we have a relation between the lift on an element

on the surface of a wing and the pressure in the field. Using Newton's Law

we can compute the acceleration of the fluid from the pressure gradient and

compute the velocity by integration with respect to time.

We will consider as the first example of the method, the derivation of

the formulas for the downwash due to a lifting doublet at both subsonic and

supersonic speeds. The pressure caused by a doublet is given by the expression

derived in Part I with substituted for C i.e.

111-4 L(In)dJX3qv f&3(Mk-I)Z

+ 0b L A~JAVk F 0') dT"/I
4W,

Where Lgjah:lift on the element (lbs)

R-r•) = function showing lift variation with time

1 -- time of emission of pressure pulse striking the point

x, y, z at time t.
Considering first the steady stnte case )is the constant unity and 7 is

given by the relat-on (Ueference I.)

,WADC TR-52-290



The left hand side of III.5 equals the distance the wave travels in the

elapsed time ) and tnt rigt side showrs the space distance from IjM

to the point x, y, z. Solution of this enuation shows only one real root for

subsonic speeds but two for supersonic speeds. This means that two pressure out

waves reach each point at supersonic speeds where as only one occurs at sub-

sonic speeds. So f Q for MŽI and for M/1.I

Newtons Law gives = - or for the ste-dy c.e Pke

Writing this ecuation for the subsonic case give forW, the following expres-

sion at Z= 0 i.e., the plane of the airfoil.

111.6 4ru(v~1f )~

and after integration

111.7 LJI) (Yhj +

Far behind the doublet we obtain:

aTrP U

An if we integrate this eouation for - V to +V% we note immediately the

similarity between a row of doublets and a horsehou vortex extending from

VV to 4.

For the supersonic case we use 2 for the value off(( and use the Mach

WADC TR-52-290 12



line as the lower limit. This yields:

L 46n (M 4, _

aireu riq

It is showm in Part I, that the low,;er lliit of this integ;ral gives a

• •downwash of zero so that:

111.10

If (%-S) is large compared to ( )-h ), II.10 ecuals I1I.8, slioing

the downwash at far distances from both a supersonic and subsonic Joublet is

the same.

The next ,,roblem which will be considered here is the conically loaded

delta wing. It is convenient to use for this problem the vertical acceleration

due to a line of doublets rather than the vertical velocity. We obtain from

formula 111.9, the result

We use the coordinates: h ecual the tangent of the angle from the center-

line and 9 equal the distance to the point along the A axis. The vertex of

the delta wing is at the origin and its centerline is on the Y- axis. Therefore

WA and -4-J0so Lhat:

WADC TR-52-290 133



The integral here has the form dV

This yields:

The infinity along the Mach Cone of the last doublet to influence

is thrown out since it was proved in Part I, that the downwash is finite from

a finite doublet so that a single distributed loublet will !,ive zero. This is

not the case for k- but while this derivative has infinities at the Mach Cone,

the integrated effect of these is zero.

In order to 'obtain the pressure distribution L(), we must fill the

surface of the wing with lines of doublets at various angles Ti- - 2 from

1ta-Z to where Z is the tangent of the half angle of the wvring. The

inteEral equation is :

111-14 ) 40a- rPU-YL
We interpret 111.14 in the same way we consider a vortex line in subsonic

flow because of the similarities of the infinite velocities occurin. in the two

types of flows. For example a line vortex in subsonic flow located at X gives

a c.ownwash.

111A15 WT r -9 1r

WADC TR-52-290 14



The V/ in 111.14 due a single line of doublets must therefore exhibit an

infinite velocity of the form (4kiA--

To solve the integral equation 111.14 i.e., we nleed the function LAswhich

will give •aG for hI4ftand which is symmetrical with respect to the center-

line, we u@ L =) For other values of aW -vre can utilize the results

of the littng-line integral equation of Reference 3.

In order to evaluate K, we calculate &V for U()C and integrate

from the Mach line to the wing through the singularity at the wing tip. Performing

this integrati-n yields:

111.16 " : - - ,, ,,

Thig integration, with respect to X forW, can be most easily performed

by letting \= _ to yield:

111.17 W -Ux i-" C VI--"(M '4) d A

We integrate 111.17 by parts to obtain:

iii.18 UO( K ~(~ 4

The first integral is zero on the Mach cone and infinite at .

This infinity however can be set equal to zero since W must be UoC on the

airfoil according to the boundary condition. An explanation of this singularity is

given in the discussion of leading edge suction contained in this report.

WADC TR 52-290 15



Let us now consi-Ier the s3cond inLe ral ,.nd let V to -1elIu:

111.19 CO -

This intcgral is 1noin firom previous work to be an elliptic in e r.-.. of

the second kind, Reference 4, P. 135. Thus -,e obtain:

111.20 K -' £ (y1 (M•-,) )

and the lift dýLstri!, ution is zJ.ven by: the e::uression:

111.21 U____ _

This well-knowm result is contained- in many previous references.

WADO TR-52-290 16



YON-STL•,-ADY FL,3U• JOUL -TS

The non-steady pressure .oublet can be, derived from the non-steady pressure

source by differentiation. The expression for the non-stepdy pressure source

is ,iven in reference 1 as follows:

111.22 I (CO"')

where IE repres nts the strength of the source as a function of 7'which is

related to %),9 L.-nd fby the following:

111.23 MY. __k_

This expression means that each point of the fluid X) 1 Z. receives pressure

impulses at time +_ generated by the sources at time?. In tre supersonic case

there are two pulses received simultaneously, a backward moving pulse corresponding

to the larger value of 'V and a forward moving pulse corresponding to the smaller

value of 7.

For an oscillating source represented by e the pressure source

expression yields:

111.24 i

The pressure along the Mach Wave from both pulses has the phase lag of

C M(1%I)so that wave front has a sinusoidal spatial distribution of pressure as

might be expected.

WADC TR-52-290 17



The pressure doublet i3 iven by differentiation uith respect to z as

mentioned above, and involves four terms i.e.,

i4clr .....

III. 25

where the IL sign means the sum of the >lus and ::inus terms.

The vertical acceleration )f the air particlecaused by the doublet is given

by Newton's Law e =- . The e::xression fore at & a is the same as

ecuation 111.25 except that we must divide by -Z and set Z=O.

Suppose we desire to compute the W velocity of a particle at Xj3 ,Z-O at

some value of time It . We can first consider the increment of dounwash when the

particle is aZ', -rOof the moving system. The vertical acceleration is given

by the pressure -radient at )(,but with a time t-l-.J. The increment oi velocity
U

is d C os that the expression forWis:

111.26 W I K Z0 t - -f (C' a t -4 )I.

tV

were X* rfers to the value of X at the Mach cone. The final formula for the

downwash caused by a doublet is then:

E(M 11) 0
W(X6,7z,,ot) -M e

111.27

WVTADC TR-52-290 18



The solution for the above integral has not been obtained, but some idea

of the functions involved can be obtained from the following apT roach which

involves an integration with respect toI for the source lefore developing the

doublet.

"In this approach we will integrate equation 111.24 with respect to

between the two values of V which make the denominator vanish. In reference 1,

we use a substitution similar to the following:

C-0 5 e = "V- M .) _-

(VMW -' - y 1• - e4 x -( '-,V' sine

so that ___ c- |

_+ c,•, C(M, •i~ vi~~CS
111.28~ __; 9) e(~

~W VOf)Z"cos

which yields

The pressure caused by a 'line of doublets is obtained from 111.29 by

differentiation ie:

AE DC _/W-290x1I111 .30 a't __xC ___1L(W_1

"*'ý,ADC Mh-52-290 19



The pressure gredient at ZOc--n be -`Ltaýined fro-n: 111.30 bydividing by Z.

and setting 7_= . Using Nei•Lon' s Law as uxr. iaqineo.t T,-Oi~Vously,; !'. the oscill-

ating doimn'ash, -ve a'.. tam the lrolilowint, e(- r iji

The function in the above equation could be tabulýýteci to o&Lt,?in Lhe

oscillatiing doiwnwaslh behiind a tvwo-l-imensiorial liftinh line. For :iinite lifting--

lines a sluiilar e~x:rer3sion is obtained excel., t'at isan inco.;plete inte{7ral.

This- relationl shows that type o.' integrals uwhich may e expected from ec'uation

III .27

WADO Th-52-290 20



LEADING EDGE SUCTION

A suction force is provided when air flows around a corner without separation.

Suction occurs at the leading edge of a subsonic airfoil or thie leading edge of a

supersonic airfoil when the edge is swept behind tLe Mach cone an(d the airfoil

develops lift. A physical picture of the suction force is imiortant in the design

of airfoils for subsonic snd sup.)ersonic flight.

In this part of the report, a simple mathematical calculation of the suction

force shall be given base' on linear theory. The pressure at )09,7caused by a

subsonic doublet at %XtV47=O is as follows:

111.32 W -) 44.'it& 0 ( -M)t .

To obtain the pressure due to a line of doublets extending from ft=-ov to =4 O

we let A=(4-h) and obtain

111.33 + L_ __ Z

wAich -ives:

111.34 M z

.2 Tr -+ (,I- M-Lz) ,q

whence: L-- L -1-M-& (gXA u( -' i)2.)a-rr + 0 -+ ,.,,) 7,2'1"-

and L Ct-fr .2M 2ZX

WA.C TR-52-290 21



Using Newton's Law fU !-, and (3U4 W - P& we obtain for 0 and W'

the following:

111035 W
a~wPL + - M1)L2.)

111936 U --

The .,elation • is seen to hold bet-,ween 111.34 and 111.36.

The above relations for Wand LI are the same as these for a two-dimensionsl

vortex in compressible flow wilereW in 111.35 iýefers to the dov.rnard velocity so

that sign was changed in the process of going from 111.34 to 111.35.

For a flat plate at angle , we use 111.35 with 7= oandk- substituted for X

yielding the well-known integral eru-tion:

111.37 Vat +b (+b

From reference 3 -is i;en as o .-whe, e e b a.

In order to calculate thc suction orce we enclose the leidiný i .;e ,ith a

curve given by the ecuations. S- %6 On t ;s curve we

calculate M and W and use the iiomentum ecuations to obt::jin the force caused

by the leading edge. In this tre tment 1i- smALl so taL, the r,:nge of in-e,- ration

of ecpn be small as long as • I e expression for W and V on tý.is curve

are as follows:

WADC TR-52-290 22



111-38I cose 4-tb ae

so that 111.0O "

111.40 W- : cos _________

In order to calculate the suction force from 111.40, we need the pressure

and momentum eouations for linearized flow retaining terms up to the second

order. These equations are derived as follows:

111.41 - v44 , +-, o +,,) CAi

Vmere according to the linear theory is e = e ( -

Substituting the expression for P an integration of 111.41 yields:

111.4.? 2k + u.•'i L ot -V J -Mo + 4

For the momentum equation, i-:e oktain:

111.43 -5 23
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w:,ci. a 'ter subs f uu.or kiedz

111.44 vj jZ Lvii JuJ-Z +5uvd-7

The suction force .i'jti zero Ties. re rourA t Con-ta-l is

11I.45 F~ (-(tMOA){U24?. ~

2 Tr b Q'x-

WL

The rnom~entwtu c2.used by' tlic pressure is:

111.46 iM - .*r+

111-- m (Ce ,L4 +

Therefore the expression for dh rr- foi-ce co:ý,cs out 1.>. ould be expe)Ccted

frorm the mowin fact Lhat no press;ure lrm- e,,isLs at s -,,,; ;.eeds.

We -,,-ll now consider the zuctlion force, o- a su ersc2,iac lelLa wing. T'.e

lift di:;tribution is irnbi f or-lula 111.21 o t~.LUis uuP a)n,,tL

divi~in, t,;is Lor 1 polo

111.47 t ______________ -uppur jurface

~~~~~u u.1-~)-,-io: surface
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Vmay be o'Ctained byintey,-ratiori of the rel GI--onl ~ or il.5

Nei-ton', Law er~uavaleýnt *ý The ý~~isirorwY e

written as:

Now V=0 at the le>;dinc5; el;e at Lzo since U=00 at the

leilding ed, Ie. Into rate r of 111.48 from to?( Y-el:' s:

Th-e sir,ý,ular z~e~t of ti-ds integ7ral is no; lected. because V/ goes to infinity

lil-e V at the leadinr; ede-e. a ri~dav

At the leadln, dci 9 ecusls Zand A E Cso tLat t.~e r-esultint velocity

is i-ormavl to the le.:adzin; edge and i-,as a constant value. Th-is means th-atu the flow

i- t.wo-dirnensio;.~.l in a. direction normal to the leading edg-e. Theu vf~lue of~ th-is

resýI~tcust velocity nenr tile leading edge is

111.50

or letting 24 ~~ J~ Zi

Comp-aring w.,ith 111.40, V and W s.,,ould be iven by the relations

ACTR-52-290 25



111.51

where Mh the Mach number normal t ',he erletling edge.

A verificticn of this formula at 4=O can be obtained by considering the

singular term in equation ll1.18 letting S/• =ci

111ý52 E 3

and noting that -- Mu') -

The suction force can be obtained in the sawe way as in cauitic- 111.45

rps)( 'I-MV1 w2 j)#. or the total suction force considering the

forward component is for both sides:

111.53 (

where ) is the length of the maximum chord.
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Q04LUMIGNS

1) This report contains the derivation of the doublet flow on the basis of

"physical reasohing3

2) The physical picture of doublet flows permits one to comprehend the

sigularlties involved and to better appreciate some of the approximations of

linear theory.

RE C 01:r.ND AT:ONS

1) Numerical work should be carried out to obtain the effects cf unsteady

motions on supersonic downwash.

2) Further work should be done to clarify the mechanism involved in passing

from the fixed to the moving doublet.

VoADC TR*-52-290 -27-



REFERENCES

1. Wasserman, Lee S.: "Acoustic Derivation of Supersonic Theory",
Air Force Technical Report No. 6617. August 1951.

2. Prandtl,L.: "Theory of the Airplane Wing in Compressible Media",
Luftfahrt-Forschug, Volume 12. October 1936.

3. GlauertH.: "Aerofoil and Airscr&di Theory".

4. Magnus,W., Obenhettinger, F.: "Integral Tables", 1948.

5. Ferri, A.: "Elements of Supersonic Aerodynamics".

WADC TR 52-290 28


